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Abstract. The finite element method is a numerical method for solving differential equations
encountered in physics and technology. The emergence of this method is associated with the
solution of space research problems. It was first published in the work of Turner, Cluj, Martin and
Topp. This work contributed to the emergence of other works; a number of articles were published
with examples of the finite element method to the problems of structural mechanics of continuous
media.

The main idea of the finite element method is that any continuous quantity, such as
temperature, pressure and displacement, can be approximated by a discrete model, which is built
on a set of piece-continuous functions defined on a finite number of subdomains.

The finite element method has evolved from a numerical procedure for solving problems in
structural mechanics into a general method for numerically solving a differential equation or a
system of differential equations. This progress has been made over a fifteen-year period through
the development of high-speed, digital computing machines needed for more accurate calculations
of aircraft structures, as well as through "the assistance of the National Committee for Space
Research. The computing machine has accelerated many complex numerical calculations. space
required the allocation of funds for fundamental research and stimulated the improvement of
universal computing programs.The finite element method is used in the design of aircraft, rockets,
various spatial shells.

Key words: Finite element, pipe, motion, compression, lubrication, system, vibration,
equilibrium, continuous value, discrete model, cross section, node.

Introduction

In the general case, the continuous quantity is unknown in advance, and it is necessary to
determine the value of this quantity at some interior points of the region. A discrete model,
however, is very easy to construct if we first assume that the numerical values of this quantity at
each interior point of the region are known. After that, you can move on to the general case. For
each element, its own polynomial is determined, but the polynomials are selected in such a way
that the continuity of the value along the boundaries of the element is preserved.

The finite element method is based on the idea of approximating a continuous function by a
discrete model, which is built on the set of piecewise continuous functions defined on a finite
number of subdomains, called elements. A polynomial is most often used as an element function.
The order of the polynomial depends on the number of continuous function data items used at each
node.

Main part
A one-dimensional simplex element is a straight line segment of length L with two nodes, one
at each end of the segment.
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T=¢@ T +@,;T;
Xy, — X X —Xq
P1 = P2 =
A two-dimensional simplex element is a triangle with rectilinear sides and three nodes, one

for each vertex requires logical numbering of element nodes.
T=¢:T1i + Q2T + 3T

1
P1 25(31 +bix+cy)

by =y, —y3

{31 = X3y3 —X3¥2
C1 =X3 =X

1
(OF) :ﬂ(az + byx + cyy)
dz; = X3y1 — Y3V
{ b, =ys—y1
Cy = X1 —X3

1
Q3 = ﬂ(% +bsx+c3y)
dz = X1Y2 — X2¥1
{ b3 =y -y
C3 =Xz = X1
1 X1 "
2A = ‘1 X2 Y2
- - - - - 1 X3 Y3
We will consider a three-dimensional simplex element.
_ _ T=0Ti+@: T, + @3 T3 + @, Ty S
Consider a three-dimensional function T (X, y, z), the value of which is given at the corner
points of the parallelepiped. (1,2, ... 8) (1-T, 2-T, ... 8-T) (Fig. 1)
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Figure 1- parallelepiped

If the length of the parallelepiped along the x— 2a, along the y— 2b, and along the z— 2c,
then the coordinates of the corner points relative to the center of the parallelepiped will be.

1- (-a; B; -¢)= (X1, ¥1,%1)

2- (a; B; -C)= (X2, Y2, Z2)

3- (a; -B; -C)= (X3,¥3,23)

4- (-a; -B; -C)= (X4, Y4, Z4)

5- (-a; B; €)= (X5, Y5, Zs5)

6- (a; B; ¢)= (X6, Y6, Z6)

7- (a; -B; ¢)= (X7,¥7,Z7)

8-(-a; -B; ¢) = (Xg,Ys, Zg)
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The value of the function T (X, y, z) to an arbitrary point (X, y, z) inside the parallelepiped is
approximated as follows.
T(Xy,2) =X + 2% + A3y1 + Aazg + AsXqY1 + AeXqZy +A7y120 + AgXqY129 1)
To determine the constants A; (i = 1; 8), we compose the following control system:
Ty = T(x1,¥1,21); T2 = (X2,¥2,22); Ts = (X3,¥3,23);
Ty = T(X4,¥4,24); Ts = T(Xs5,¥5,25); Ts = T(X6, V6 Z6); (2)
T; = T(X7,¥7,27); Tsg = T(Xe, Vs, Zs);
Substituting the values of the arguments, we get the system of equations:
(A + 2% +A3y1 + 2471 + AsXq Y + AeX1Z1 + A0y1Z1 + AgX1V1Z21 =T
AL+ A%y + A3y2 + AgZy + AsXoY2 + AeXaZy + A7Y22Zs + AgXpyaZy =T
A1+ Ao%3 + A3y3 + AgZz + AsX3y3 + AeX3Z3 + A7y3Z3 + AgX3yszz = T;
AL+ 2%y + A3Yy + AgZy + AsXyYa + AeXaZy + A7Y4Zs + AgXaYaZy =T 3)
A1+ ApXs + A3yYs + AyZs + AsXsYs + AeXsZs + A7YsZs + AgXsyszs = Ts
A1+ A2%e + A3Y6 + AaZg + AsXeY6 + AsX6Z6 + A7Y6Ze + AgXeY6Zs = Tg
A+ 0%7 + A3y7 + AaZy + AsX7Yy + AeXo27 + A7y7Zy + AgXyys2; =Ty
\A; + AyXg + A3Vg + AyZg + AsXgyg + AgXgZg + A7ygZg + AgXgygZg = Tg
Solving this system of linear equations, we obtain the values of the coefficients A, 2, ... Ag

A

Tg+T74+Tg+Ts5+T4+T3+T,+Ty
f /\1:

8

_ —Tg+T7+Tg—T5—Ty+T3+T,—T;
Na= 8a

_ —Tg—T7+Te+T5—T4—T3+To+Ty
As= 8b

_ Tg+T74Te+T5—Ts—T3—T,—Ty
/\4_ 8c

9 Ao Tg+T7+Tg+T5+T4+T3+T2+T
57 8ab

A= Tg—T7+Tg—T5+T4—T3+T,-T;
6™ 8ac

Ao —Tg—T7+Tg+T5+T4+T3—-T,-T1
7 8bc

A= Tg—T;+Tg—Tg—T4+T3-T,+T,
\ 8= 8abc

(7) substituting these values into equation (2) we obtain:
Txy,2) =e1(xy,2) *Ti + (3,2 * T, + 3(x,y,2) * T3 + 9, T + @5 (x,y,2) * Ts +

Pe(x,y,2) * Tg + @;(x,y,2) * T, + @g(x,y,2) * Tg; (4)
-a<x<a;-b<x<b;-c<xzc;

Here ;(i= 1, 8) are defined as follows:

(P4(X,Y,Z)=(%—é—%—i+% i &_ﬁ)’ )
R (R el i Al

why -a <x <a; -b <y <b; -c <z<c¢

The value of the functions o;(x, v, z) (i=1,8) at the corner points of the parallelepiped is
determined as follows:
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01(x1,¥1,21) = L, @1(X1,¥1,21) = @1(X2,¥2,22) = ©1(X3,Y3,23) = @1 (X4, Y4, Z4) =
©1(Xs5,Ys5,25) = ©1(X6, V6,26 ) = ©1(X7,¥7,27) = ©1(Xg,¥5,2g) = 0

02(%2,¥2,22) = L, 02(X1,¥1,21) = ©2(X2,Y2,22) = ©2(X3,¥3,23) = @2(X4, Y4, Z4) =
©2(X5,¥5,25) = ©2(X6, V6,26 ) = ©2(X7,¥7,27) = @2(Xg,¥s,2g) = 0

03(X3,¥3,23) = 1, @3(X1,¥1,21) = @3(X2,¥2,22) = ©3(X3,¥3,23) = ©3(X4, Y4, Z4) =
©3(Xs5,¥5,25) = ©3(X6, Y6, 26 ) = ©3(X7,¥7,27) = @©3(Xg,¥s,2g) = 0

0s(X8, Y4 24) = 1, 04(X1,¥1,21) = @4(X2,¥2,22) = ©4(X3,¥3,23) = ©4(X4, Y4, 24) =
©4(X5,¥5,25) = ©4(X6, V6,26 ) = ©4(X7,¥7,2Z7) = @4(Xg,¥s,2) =0 (6)

©s5(X5, Y5, 25) = 1; @5(X1,¥1,21) = @5(X2,¥2,22) = @©5(X3,¥3,23) = @5(X4, Y4, Z4) =
©5(Xs5,¥5,25) = @5(X6, Y6, 26 ) = ©5(X7,¥7,27) = @s5(Xg,Ys,25) = 0

©6(X6:Y6:Z6) = 1; 96(X1,¥1,21) = ©6(X2,¥2,22) = ©6(X3,¥3,23) = Q6(X4,Y4,Z4) =
©6(X5,Y5,25) = ©6(X6, V6,26 ) = ©6(X7,¥7,27) = @g(Xg,Ys,2g) = 0

©7(X7,¥7,27) = 1, @7(X1,¥1,21) = ©7(X2,¥2,22) = ©7(X3,¥3,23) = ©7(X4, Y4, Z4) =
©7(Xs5,¥5,25) = ©7(X6, Y6, 26 ) = ©7(X7,¥7,27) = @©7(Xg,¥s,2) = 0

Ps(Xs, Y8, 28) = 1; 05(X1,¥1,21) = @g(X2,¥2,22) = ©5(X3,¥3,23) = Pg(X4,Y4,24) =
0s(Xs,¥5,25) = ©5(X6, Y6, 26 ) = ©5(X7,¥7,27) = @g(Xg,¥s,2g) = 0

Now let's calculate the temperature gradient within the volume of one parallelepiped:

oT _ 8 6<pi . . oT _ 8 6<pi . oT _ 8 6<pl

9x = Lizig, 1o 1= 1.8 2= 0y 50T 52 = dima 5, T (7
ad

We calculate separately %

91 _ (1 ¥y , z | ¥z )

ox 8a 8ab 8ac 8abc’'’

991 _ (L _x _z | x ¥

dy  '8b 8ab 8bc 8abc’ '

991 _ (_i X Y L )

0z 8c 8ac 8bc 8abc’'’

99z _ (1 L_L_ﬂ) .

ox 8a 8ab 8ac 8abc’'’

_a‘pz—(i X _Z xz)_

dy  ‘8b  8ab 8bc 8abc’'

aﬂ:(_i_i_L_ xy)_

0z 8c 8ac 8bc 8abc’'’

993 _ (i _y _Zz 4. ) )

ox 8a 8ab 8ac 8abc’'’

_6(p3_(_i_i Z xz)

ay 8b 8ab 8bc 8abc’'’

993 — (_i _x 4y Xy ) ;

0z 8c 8ac 8bc  8abc’ '’

6<p4_(__ y .z yz).

aax 8a 8ab 8ac 8abc’'’

9Ps _ 2 4 X L Z _ _XZN. 8

oy ( 8b + 8ab T 8bc 8abc) ! ( )

0y

X y xy)_

0z = (_g 8ac 8bc  8abc
% ( 1 y z vz )

ax 8a 8ab 8ac 8abc
99s _ (L XXy,
oy 8b 8ab 8bc 8abc’’
99s _ (l _xX LY Xy ¥
0z 8ac 8bc 8abc’'’

996_ (1 Yy , z yz).

ox 8ab 8ac = 8abc’’
0pe__ ( 1 x z xz )
oy 9y~ ‘8b 8ab 8bc  8abc’’
996 _ (1 Yy Xy ):
0z 8c 8ac 8bc  8abc’’
097 _ = (= 1 z  yz ):
ox 8a 8ab 8ac 8abc’’
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097 (_L_L_L_ X2
oy 8b 8ab 8bc 8abc’’
Qo (L x v _ x
0z 8c 8ac 8bc  8abc’’
6<p8 ( 1 _z vz )
8ab 8ac  8abc’’
6(p8 1 x z Xz .
oy 5y~ C 8b 8ab 8bc 8abc)’
a(pS ( X y Xy )

0z 8c 8ac 8bc 8abc’’

aT(x %" z) = 9061T1 + <P26T2 + <P37(;3 + <P4T%+ <P5£5 + ‘PaﬁTe + <p7’1(;7(/)8T8’
a:; — a(ilTl + (pZTZ + (P3T3 + ‘P4T4 + (pSTS (p6T6 (p7T7) + (pSTS'

T _ 3¢, 6<pz 6<p3 3<p4 6<p5 awe 6<p7 aws
g¥ j 56(311 at 5(.02 T2 Tor a‘Ps T3 Tor 6<P4 T4 Tor a‘Ps T5 66(2]6 oy 6657 T7) Tor 6<p TB’
=5t T+ =T+ =Ty + = Ts—=Tg——=T;) + ——=T;
1 X Z X X7Z Z XyZ
F(°)=(§‘a‘%“a+ﬁ+a+$—$)'
X Z X XZ yA XVZ
PO = (54 5= 5™ 50 ™ e * e )
X Z X XZ yA XVZ
F(2)=(§‘a‘%‘a‘$—a 2+ )
X YA X XZ Z XVZ
F(3):(§+a—%—a+ﬁ et e )
X YA X XZ Z XVZ
F(4):(§+a+%+a‘ﬁ—a+$— =)
X Z X XZ yA XVZ
F(5)=(§‘a+%+a+$ s ),
X Z X XZ yA XVZ
F(6)=(§+a‘%+a‘$ ),
X YA X XZ XVZ
FD=(m i mt et s s st i)

F(x,y,2) = F(0)Ty + F(1)T, + F(2)T, + F(3)Ts + F(4)T, + F(5)Ts + F(6)Ts +
F(7)T5;

The general functional is
J=h+] +]3;
1
L= fV 2[ xx(ax)z + kyy( )2 + kzz( ) Jdv
J2 = [, aT'ds;

Js = [y, 3 (T? = Tpo)?ds;
T! = F(4)T, + F(5)Ts + F(6)Ts + F(7)T;
T? = F(0)T, + F(1)T, + F(2)T, + F(3)T3;

b T (x,y,2) T (x,y,2z) T (x,y,2) .
Jo= S o I k(5 + () + (52 5) ldxdydz,
b '
Jo =[5, )7, aT (x,y)dxdy;

b h
Js = [, 12,5 (T = Too)?dxdy;

] 6=(])1 +]2 +]3 =](T0»T1' TZ'T3'T4' TS'T6'T7);
(20 _

0Ty - aooTO + a01T1 + aosz + a03T3 + a04T4 + aosTs + a06T6 + a07T7 = bO
PO _ o ) aroTo+ a1 Ty + aypTy + as3Ts + a14Ty + aisTs + ag6Ts + ay;T; = by,

T,

w: 0 a70To + a7 Ty + a7, T + az3T3 + a7, s + a75Ts + az6Tg + a77T; = by

Result: T'o,T',T 2T 3T 4,T s, T s, T 7;

(9)

(10)

(11)

T(x,y,2) = F(O)T o+ F(DT 1+ F(2Q)T , + FBR)T 3 + F4)T ', + F5)T s + F(6)T ¢ +

F(DT'5;
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x =0;

T(y,z) = F(O)T o+ F(DT 1+ F(2)T , + FB)T 3+ F(4)T 4 + F(5)T s + F(6)T ¢ +
F(DT';;

y=0

Conclusion

The results of this work can be used to determine the temperature distribution law in three-
dimensional rods in the form of a parallelepiped. When solving problems by the finite element
method, a variety of elements are used. Some of the more important ones were introduced in this
chapter in connection with the consideration of solid body discretization. These elements are
emphasized for several reasons. They are simple in theory, which makes it easy to illustrate their
application. Triangular and tetrahedral elements can be used to approximate complex boundaries
because they can be oriented as desired. Another important reason is that many of the available
computing programs use these elements.
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