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Abstract. In this work we present the theoretical approach over solving the back-reference problem in 

regular expression matching within the almost polynomial time using local search within the memory, while 

within the growth of capturing groups we obtain the exponential results: for this purpose we develop the 

modified matching algorithm operating on non-deterministic finite automata within the modified search 

algorithm and presence of the specific method also over extended regular expressions. This is made due to 

the algorithm which can be adjusted for approximate searching allowing us to imply extended operators 

and features of modern regular expressions like intersection, subtraction and complement, as well as back-

references. The review of past work on this issues is also done: to the present time there is no discrete 

algorithm in systems like automata for local search. Thus, we obtain the new result of matching the pattern 

locally while the simulating algorithm works as usual. The obtained result also refers to the membership 

problem with local bound which can be set in the main algorithm presented in this article. 

 

Keywords: Back-reference, Finite Automata, Local Search, Extended regular expressions. 
  
Introduction 

As of the regular expression languages nature and the proposed solution of extending it with a repeater 

like back-reference, in the modern era this feature is used in analyzing specific sequences in the medicine 

[1]. 

Thus, the back-reference problem is considered widely as NP-complete and the backtracking algorithm 

is used for the matching problem [2]. 

However, due to the memoization [2] the backtracking process can be optimized — as we use the same 

approach in giving the memoization of the matching process for back-references and corresponding 

capturing groups. 

The solution also covers the regular expression features like look-ahead and extended operators. 

Typically we define the non-deterministic finite automaton (NFA) as a tuple of alphabet A, states S, list 

of transitions T, starting state s0 and list of finishing or accepting states: 

 

                                                      <A, S, T, s0, F>                                                                  (1) 

 

In this work we will present the modified NFA for organizing the local search on back-reference, 

positive or negative look-ahead and look-behind and extended set of operators like intersection, 

complement and subtraction. 

 

Related past work review 

In [1] the importance and application of back-reference operator is given. 

In [2] the memoization principle is covered which we use in simulating the NFA within the capturing 

groups and back-references on the counter state – this method is presented further in this article. 

The work [3] deals with the backtracking matchers as they are commonly used in matching regular 

expression with back-references as an easy alternative to the approach presented in this paper, which uses 

the memoization of the state context and counter simulation for the state referred as ending in NFA for 

back-reference operator in regular expression. 

In [4] the subset construction of converting NFA to deterministic finite automaton (DFA) is given. 

In [5] the construction of NFA for the regular expression is given. 

In [6] the past work for converting regular expression to finite automata is presented. 

In [7] the definition of transitional NFA is given with respect to the context of captured groups to be 
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optimized towards memory consumption. 

In [8] the NFA constructions are presented for extended operators in regular expression like intersection, 

subtraction and complement which are to be used in local search during matching process as well as a back-

reference operator. 

The modern work [9] describes the logical constructions to model the features like positive or negative 

look-ahead and look-behind which is met in Perl and other regular expression flavors. 

In [10] the algorithm for converting regular expression directly into deterministic finite automaton is 

presented. It’s important to us as the example of the past work. 

In [11] the effective polynomial algorithm is given for extended regular expressions. We will show 

further that our automaton is as well quadratic in memory consumption as in complexity. 

In [12] the theory of complexity is presented – this is a seminal work of theory of complexity when the 

optimization problem is to be non-reliable if we deal with solution set explosion along the algorithm to 

check the correct solution in this set. 

We will state further that according to the NP-completeness of back-reference problem [13], using the 

counter heuristics we achieve polynomial results in time and memory. 

The work [14] considers the state explosion problem when converting NFA to DFA using techniques to 

avoid it. We consider modified or extended NFA in this work which can be built by any existing algorithm 

and mainly is from linear up to quadratic number of states in it. 

The work [15] is important for us in the sense of exact polynomial complexity, the algorithm for 

Traveling Salesman Problem (TSP) given in the article is exponential in time and can be considered as not 

optimal in the sense of modern computer architecture. 

Methodology 

Before proceeding to the NFA, we can mention that it can be transformed to DFA according to 

the algorithm by subset construction [4]. We can define the Thompson NFA [5] for our algorithm 

as it's not a conceptual decision and can be changed even to the derivative constructions by Berry-

Sethi [10] or other algorithms [6]. The use of NFA instead of DFA for local search isn’t principal 

as it will be shown further. 

The preliminary and the key idea is to define the context of captured groups and back-references 

in regular expression as following set of positions in the input string for each of the states in NFA: 

                             Context(S) = { (Li, Ri), (Bj, Ej) }, i = 1..N, j = 1..M,                       (2) 

where the N is the number of capturing groups, M is the number of back-references and the 

values in the set L and R are the positions of matched captures for the corresponding back-

reference in the searched text – B and E. 

To use the memoization principle we will extend the particular polynomial matching algorithm 

or even family of such algorithms [5] with the context principle where each context is dependent 

on the input string position is stored in each reached state during the simulation, while the modern 

solution can solve in general more effectively as to the memory consumption [7]. 

Thus, we obtain the polynomial results for our algorithm according to our results, when its 

complexity depends on the state of context in the state of simulated NFA as the stored set (2) is 

saved in memory – thus giving the possibility to exclude repeated intervals in the input during the 

pattern matching process. 

In this work for simulation purposes of local search we present the NFA with counter edges, 

where the counter is decreased by one at each step of the matching process, when the position in 

input is increased by one, and is included in the set of active states when the configuration complies 

to the present input, as well, as initialized to the counter value of the matched sub-string and is 

included for candidate when the counter value equals zero. 

The counter for the set of states S in automaton can be defined as follows: 

                                          Counter(S) = { (Si, Ci )}, Ci in N+,                                      (3) 
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where Si is the state of non-deterministic automaton and Ci is the corresponding counter value. 

Thus, the local search even for extended constructions [8] can be achieved by implying the 

counters in (3) and simulating the NFA within the active zero value when the state can be used 

further in the non-local search before it will be pushed to the structure like stack which is typically 

used in the simulation of NFA along the input string. The back-references and extended operators 

[8] are to be matched locally with respect to the counter and state composition (3) when it’s pushed 

to the stack for processing with the newly acquired counter value and, when, it equals to zero 

within the process of matching simulation, it becomes active or popped out from the same stack 

and forwarded to the matching procedure. 

We obtain the following algorithm of simulating the local search with delay using the counter 

values (3): 

Algorithm-1. The simulation of  NFA with the local delay using counter. 

define stack T; 

define set of states S; 

define the input string P; 

T := {}; 

S := { Starting state of automaton }; 

for i in 1..|P| loop 

 for s in S loop 

  if matched(P[i..j]): T.push ((s, |P[i..j]|)); 

  S.pop (s); 

 end loop 

 for t in T loop 

  t.C := t.C – 1; 

  if t.C = 0 then 

   T.pop (t); 

   S := S + { t.S }; 

  end if 

 end loop 

end loop 

The above algorithm procedure works in at most quadratic time and memory as it’s bound to 

all the sub-strings from the input. 
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The Algorithm-1 can be extended for the back-references in “matched” function when the 

context (2) is used to compare the captured group and the current input for equivalence after which 

the state is to be considered. 

Finally we state that the local search works on the extended NFA within the sub-program 

Algorithm-1 as follows: 

                                 <A, S, T, s0, F, Context(S), Counter(S)>                                      (4) 

The automaton (4) can be reduced only to counters if the back-references aren’t present. 

Thus, we obtain the principally new results for simulating NFA for extended operators like 

intersection subtraction and complement [8] as well as for a back-reference within the space of 

counter states and local search using structures in (2) and (3). These structures are to be used for 

simulating NFA for effective memoization of the captured groups and back-references (2) and 

for pop-operation delay, according to the matched string during local search using the structure 

(3). 

As back-reference problem is considered to be NP-complete – we solve it in polynomial time 

using the extra memory consumption using memoization principle and delay processing. 

The class of NP is to be considered exponential or even factorial. The backtracking algorithm 

for matching without complexity optimization gives almost factorial time, while in our method 

the memoization and counter state space is used which is limited to the quadratic of input string 

as all the sub-strings are to be considered for matching. 

In [8] using the algorithm from [4] the construction of deterministic finite automata (DFA) is 

presented. However, due to the state explosion problem these DFA cannot be universal and are 

bound to special cases where the explosion occurs. In this work we give the definition of local 

search with structures (2) and (3) which can be used in NFA which is linear in size to the regular 

expression with features like extended operators (intersection, complement and subtraction) and 

back-references. 

The features like pre-matching [9] can be also modeled in NFA instead of building the DFA 

with re-written structure using &-operator [8]. 

In general the local search is also effective as other algorithms [11] when computed according 

to the specific cases. 

So as to NP-completeness as we use quadratic memory in pattern matching routine the 

following statement of the complexity classes holds true: 

 

                                                   P = NP: M in P2,                                                  (5) 

 

where M is the memory factor. 

 

Conclusion 

Despite the fact that our idea is based upon the memory consumption and the complexity 

reduction to the polynomial order, there are open questions concerning the determinism and the 

configuration of reached states, which can change the behaviour of the matching process. This 

question remains open, however, we can be sure that local search with counter heuristics solves 

the problem of in-memory matching. 

The other point of view is the equality of P and NP classes with the use of memory (5) in 

computations for the NP-complete back-reference problem. 
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