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Abstract. The recent work on implementing regular expression (RE) matching or membership problem 

solution for extended operators (ERE) like intersection, complement and subtraction gave exponential 

results on the size of input. As our previous result was focused on deterministic finite automata (DFA) for 

extended regular expressions, we present the new linear algorithm for ERE matching on non-deterministic 

finite automata (NFA) with the help of De Morgan’s law to re-write the expression in exceptional order so 

that the conditional matching satisfies the correctness of the matching algorithm on NFA. We also prove 

that the proposed methodology is correct within the extensions of NFA like logical states as it was done 

before for DFA in the prior scientific work. We will also show how to implement these logical states in 

NFA using typical constructions like Thompson’s. The proof of linear working time is also given which is 

obvious due to the re-writing rules for correct implementation. The important role of concatenation operator 

over extended constructions is also shown. The algorithm working time is O(m*n), where m is the size of 

expression and n is the size of matching word. 
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Introduction 

 

Regular expressions denoted by R are the grammar rules which are used to express the 

languages L(R). This is widely used and powerful tool for working with textual data and parsing. 

It’s commonly used in such programming products like Java, Perl or C#, etc. 

We will define the languages and regular expressions as follows with respect to the supported 

operators: 

L(R) = { a: a in A }, where A is the alphabet and a is a single symbol in it; 

L(R1 | R2) = { L(R1) + L(R2) } - union of two languages; 

L(R1 * R2) = { L(R1) * L(R2) } - concatenation of two languages; 

L(R*) = { eps, L(R), L(R * R) … L(R * R * … * R) } - Kleene closure or star operator, where 

“eps” stands for an empty word. 

For the extended regular expressions we define the additional operators which give the 

possibility to operate on regular languages as if they would be the sets: 

L(R1 & R2) = { L(R1) & L(R2) } - intersection of two languages defined by the expressions; 

L(R1 – R2) = { L(R1) – L(R2) } - subtraction of two languages; 

L(~R) = { ~L(R) } - complement operator which defines all the strings in dictionary which 

aren’t matched by regular expression R. 

For our purposes we use the re-writing for complement operator which can be defined by 

subtraction operator as: 

                                        L(~R) = A* - L(R)                                                                   (1) 

In Combinatorics for logical and set operations there’s De Morgan’s law which is defined as 

follows: 

A | B = ~(~A & ~B), 

A & B = ~(~A | ~B).                                                                       (2) 

The law (2) is true even for sets which can be defined by regular expressions and thus can be 

applied for the purpose of re-writing gramatically the regular expressions. Further we will show 

that it’s required in special cases when concatenation operator is used. 
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In the next section the review of the previous work is given with respect to the actually presented 

optimal results in this work. 

Before we will define the membership problem for the word w and regular expression R as 

follows: 

w in L(R)                                                             (3) 

 

Past work 

Rosu gives the exponential algorithm for extended operators – this is the best known result to 

the present time [1]. Our algorithm differs from the prior version for DFA with the same 

constructions [2]. Thompson constructions are linear to the size of regular expression and are used 

in our algorithm [3], this mainly doesn’t limit the type of algorithm for NFA synthesis as we will 

prove further. Rabin and Scott provide us with the subset construction algorithm of converting 

NFA directly to DFA [4] – this is as stated before the previous result proposed by an author. Gelade 

and Neven give the exponential estimation of the size, in our case, of the states for extended 

operators [5]. The last work focuses on the state explosion during subset construction when we 

were building DFA from the NFA[6] – this is the main fact why there is the reason of building the 

linear NFA within the linear matching time for the membership problem. 

The prior works [7, 8] were focused on the building of semantic rules for subset construction 

of DFA supporting the extended operators – this is necessary to note that in our NFA the same 

logical rules are applied. 

The work [9] is important to use in the sense of past published work with respect to the extended 

operators. 

Hsieh gives the product algorithm for construction of certain types of operator extensions in 

ERE [10] – it was shown that these product constructions are of exponential nature [7]. For 

practical reasons of product construction algorithm on intersection, complement and subtraction 

we use Møller’s software [11]: for certain types of expressions like “(0*1*… | …) [&, &~] 

(1*0*… | …)” it demonstrates the exponential explosion of the number of states and transitions as 

well as DFA state explosion for expressions in form “(0|1)1(0|1)(0|1) … (0|1)”. 

The quadratic of the size of the word was recently developed [12], however, our algorithm 

works in linear time of the size of expression and word. 

 

Preliminaries 

For the preliminary section we will define the NFA as a tuple: 

<A, S, s0, T, F>,                                                 (4) 

where A is an alphabet, S is a set of states, s0 is a starting state, T stands for transitions and F 

is a set of final states. 

In the past work [2] we defined the special states by which we extended the definition of NFA 

(4) with the intersection and subtraction operator constructions as follows: 

<A, S, s0, T, F, B(S)>,                                    (5) 

where B(S) is the set of logical conditions to be satisfied during the matching process or subset 

construction. 

We define the set B(S) for intersection and subtraction while the complement is given by re-

writing rule (1): 

B(S) = { (1 | 2): L(R1) & L(R2); (1 & ~2) : L(R1) – L(R2) },              (6) 

where pair of number one and two stands for the flag conditions in the final implementation in 

order to the state become active and, thus, is to be included further in the stack during the matching 

process in general as opposed to the subset construction [2]. 

As we are finished with introduction, review of the past work and preliminary information it’s 

time to present the algorithm with a proof. 

 

Re-writing algorithm 

Our algorithm for NFA construction is based upon the previous result [2], while the DFA 
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construction is omitted as mainly DFA are exponentially large for the predefined set of expressions 

due to the Kleene star closure. Thus, we use the same non-deterministic constructions. 

Before the construction we have to give the notion to the re-writing rules which are used for 

concatenation operator of two regular expressions with the different operators like union and 

intersection: other operators like complement and subtraction are omitted because there is no need 

to re-write the rules according to De Morgan’s law so that the matching process is correct within 

the typical matching algorithm which is linearly defined by the upper bound: 

O(NFA Matching) = O(N*M),                                        (7) 

where N is the size of the regular expression and M is the limit of input. We will show in proof 

section of the algorithm that this is not required. 

We state that in order of concatenation the following conditions are to be met in order to satisfy 

the correctness of the construction of NFA for solving membership problem: 

NFA((R1 | R2) * (R3 & R4)) = 

    NFA(~(~R1 & ~R2) * (R3 & R4)) = 

    NFA((R1 | R2) * ~(~R3 | ~R4)),                                                   (8) 

where NFA(~R) is defined according to re-writing rule (1). 

The same is true for subtraction and complement: 

NFA((R1 | R2) * (R3 – R4)) = NFA(~(~R1 & ~R2) * (R3 – R4)), 

NFA((R1 | R2) * ~R3) = NFA(~(~R1 & ~R2) * ~R3).                           (9) 

And finally for the last combination like intersection: 

NFA((R1 & R2) * (R3 – R4)) = NFA(~(~R1 | ~R2) * (R3 – R4)), 

NFA((R1 & R2) * ~R3) = NFA(~(~R1 | ~R2) * ~R3).                          (10) 

Thus, we use the re-writings in (8)-(10) according to De Morgan’s law – the linear size of 

complement from regular expression here plays an important role and gives us the possibility to 

safe the size of the built NFA which is linear to the size of regular expression. The NFA by itself 

is constructed according to Thompson’s rules [3]. 

It’s necessary to note that the methodology as to the previous works [2, 7, 8] is also applicable 

to the general case for NFA as the preliminary automaton to be converted to deterministic is of the 

same modeling approach as it’s used in the typical matching algorithm for the solution of 

membership problem. 

In the next section we will prove the correctness of re-writing algorithm for certain types of 

intersection operator conditions when the operators like union and intersection are put in the right 

order. 

 

Proof 

In this section we will provide the reader with the proof of the correctness of the re-writing 

rules for the concatenation of extended operator of intersection and union-operator which is far 

more typical. 

Let’s define the function T(R) as the degree of possibility of matching the regular expression R 

in NFA – this function gives us the possibility to observe the number of situations during which 

the concatenation matching is resumed. 

Thus, T(R) is defined as follows for the specific case like concatenation of union and 

intersection which, in turn, is the only special case to be considered: 

T(R1 | R2) = 2, 

T(R1 & R2) = 1.                                                           (11) 

For the concatenation operator we define the correctness of the matching in membership 

problem as the state when logical conditions are satisfied for union and intersection as well – this 

can be written as: 

T(R1 * R2): T(R1) <= T(R2)                                              (12) 

As per our re-writing rules the necessary condition (12) is satisfied, thus the correctness of 

algorithm is proved. In general we can use empty string function [9] to compute the next node in 

abstract syntax tree when parsing regular expression, however, this can be omitted as we can 
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simply rewrite the union operator according to De Morgan’s law. 

Another proof is to be made for the logical states in NFA: as per non-deterministic case they 

are remained without changes and are to be addressed for the static matching process without 

closure evaluation [2]. 

 

Conclusion 

Thus, we obtained the linear polynomial results by applying De Morgan’s law in re-writing 

rules. This gives us opportunity to build NFA-based engines for extended regular expressions as 

they work optimally and aren’t of perfect fit for other problems which are not omitted in the 

presented algorithm – we gain all the power of NFA in membership problem by matching. 

The author lefts not opened questions upon the effective linear matching of extended operators 

in RE, however, there could be other open problems like implementation the specific features in 

the same time. 

For the practical purposes we have also developed the Java version of regular expression engine 

based on the algorithm described in this article. This program can be obtained upon the request. 
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