Internal workload of NOSQL relational database
Mirzakhmet Syzdykov

UDC 004.02
IRSTI 20.53.15

INTERNAL WORKLOAD OF NOSQL RELATIONAL DATABASE

Mirzakhmet Syzdykov
al-Farabi Kazakh National University, Almaty, Kazakhstan
mspmail598@gmail.com
ORCID ID: https://orcid.org/0000-0002-8086-775X

Abstract. In this article we present the scheme of internal workload of typical relational database
supporting NoSQL human interaction protocol, we state that the production consumption of query
complexity cannot be avoided and modern techniques like explain plan play vital role in bringing the
functionality of database server to the end-user with support of open data storage like CSV file format
which, in turn, is textual — thus, the question of open storage is discussed in this work within the unlimited
support of table sheet formats like CSV, as to the modern Big Data trends we propose the solution used
supposedly empirically by popular SQL database systems — this is a plan to run the incoming query and
transform the result to the format which can be adopted for final output; we also develop the end
programmable product using C# programming language and .NET framework which are the modern
programming environments for proper development of platform independent software — the proof of
important theorems of relational database query complexity processing and optimization is also given.

Keywords: NoSQL, data processing, relational database, open storage.

Introduction

In the modern era the structured query language (SQL) became a standard for purpose of querying
data to obtain the results as per giving the limits and if-statements to get the more precise result of seeding
values. The NoSQL (not only SQL or no SQL) trend today is emerging as an alternative to the general
approach and gives the possibility of probable out-performance for the previous generations of SQL
database management systems (DBMS).

The work of addressing the OLAP feature in NoSQL databases [1] is solved by our definition of
structures along which we achieve the universality of using relational data over production system, the
definition of which is give later in this work.

From the other side [2] the NoSQL is giving more broad perspectives for Big Data, according to
the authors of referenced work the modern data storages approximate to petabytes. We give the solution
according to the optimizing explain plan for the relational database tuple to make the right decision of
choosing the data to be processed on server or specially developed RISC-machine.

The comparison of SQL and NoSQL databases is presented in [3]. As previously described we
prove by definition of tuple that SQL and NoSQL databases working time observes to be equivalent to
the theorem proof.

Java Script object notation (JSON) is discussed in [4]. For this time MongoDB or other systems
adopt this format for formal clauses which are equivalent to the SQL queries, the difference is in how
they are processed by the “black box™ or database engine for query processing and assembling of finite
data.

In [5] the way of optimization is presented with respect to the document and relational model. Our
approach based upon the law proof which, in turn, is an outcome defined by the main theorem and, thus,
the optimization is only a path through tuple elements giving better or best throughput.

The comparison of document-based MongoDB and relational MySQL is given in [6] — it turns out
that in some cases the non-relational approach is better for Big Data, however, we define that relational
and non-relational databases adhere to the same theorem of the complexity equivalence of this classes of
data processors.

For the purpose of our proof of concept we have developed the hybrid database system based on
the relational model with the support of non-relational features like NoSQL and typical join operations
[7]- In our model the open textual storage is used like comma-separated values (CSV).

SQL DBMS review
SQL database systems are widely used in the modern age, especially for the web applications and
4

https://orcid.org/XXXX-XXXX-XXXX-XXXX

Internal workload of NOSQL relational database
Mirzakhmet Syzdykov
cloud processing of streams of data. They use typical relational database model for operational purposes
and to define the final human computer interaction with the end user. The SQL or query by example
(QBE) is used as a query language in order to get the results which are seeded by the predicates of the
formed query string.

The bottleneck of these systems is that they are highly inefficient and require special hardware
resources to process the query and store indexes and data — thus, the question of optimization arises and
is solved by introducing explain plan or other alternatives. Most of them are open-source and gives us
the possibility to fork the new database engine with the support of extended or NoSQL features.

Thus, the SQL database systems cover approximately more than fifty percents, or half, of the
Internet segment of the on-line services and are limited to the gigabytes of data to be stored and queried
on budget and on time.

NoSQL DBMS review

Modern trends like NoSQL arise to be an alternative to the industry standard like SQL
database. According to our research, most of them adapt JSON notation or any other document-
oriented format like XML, for example, which, in turn, is accomplished by the XSL assertion.

Thus, the NoSQL databases which are more efficient than its predecessors are available
today in the most common document formats —we consider this as a good addendum, meanwhile,
the other side is that the relational model which is simple for understanding cannot be achieved
and the broad perspectives of data modeling are omitted.

In the other hand, the relational model is very strict which gives the priority to the non-
relational databases to convert data to documents and operate on the higher level rather than
typical database schemes and constructed data models.

We define the paradigm between relational database and object-oriented programming
(OOP) to be equivalent according to the modern standards of workload of the today developed
systems by the use of persistence of objects in the relational model as a single separate table in
the database system.

Main theorem and its proof. We define the theorem for the relational data and the data which are
document-oriented which are subject of the joining different set of entities in one pre-defined tuple.
By this tuple we define the following expression:

<T, Q,R>,(1)

where T is a set of tables or document formats in non-relational database and Q is a set of queries
to the database engine incoming from end user, and R is a set of optimization rules — these rules can be
met as explain plan hints in Oracle database.

Thus, by defining the common model for both SQL and NoSQL databases which can be also
divided as relational or non-relational, we get the main theorem which states that the production rule for
internal joins adheres to the multiplication of all the tables for the given complexity of each query in Q
cannot be avoided and is supposed to be processed by the cursor:

O(Q) = ITa| * [T2| * ... *|Ta.)
While the cursor is to be defined as a state in the production rule (2):
CQ =M, ty ... t): ti=1.|Ti|, (3

where t; is a current step in the cursor for production consumption within the defined complexity
and |...| is a number of rows in the table or document to be processed by the query.

The proof of the theorem for any type of database, which can be both relational or document-based,
follows from the fact that the set R of optimization rules is limited to the set of complexity of cursor tuple
in (2).

By this proof we get that the join factor of several tables cannot be uniformly optimized in the worst
case of evaluation of the truth of the query predicate in Q by simple paths of explain plan, meanwhile, the
whole structure is to be preserved, so that any of the acceptable data are covered by each iteration of
querying process.

Internal workload of NOSQL relational database

Mirzakhmet Syzdykov
As the cursor is common for both models, we can state that the optimization rules in set R are to be
constructed according to non-index approach — as we use open data storage in pure textual format. These
optimization rules reduce the production explosive complexity to the limited set of operations for which
the tuple evaluates to true and the query predicates hold true at the same time. This technique is effectively
used in the modern DBMS like Oracle, where user has the possibility to tune the execution plan of the
query according to hints which appear in comments for the query string; the explain plan feature is also

present in Oracle with respect to the user evaluation and tuning.

Proof of concept software description

For our purpose to prove the product-rule (2) explosion in (1) while evaluating the query, we have
developed the software available from GitHub [7].

In this manner we define some SQL-like clauses like logical operators as well as joining operator.

While evaluating the query expression, the optimization rule r in R can be applied to the cursor and
the order of acceptance or reject of current cursor can be determined.

Conclusion

Thus, we have given the proof of product explosion for relational model or document-based
model where relational operator cannot be avoided in general, if even we would consider the NoSQL
database system.

We have also developed the software for evaluation purposes which gives the outcome as the
relational model leads to the product explosion for complexity of processing the query.

We also give the solution for Big Data by applying the optimization rules in definition of tuple.
By this fact, we define the set of separated rules which are to minimize the set of elements in cursor
and, thus, leading to the more effective process of query evaluation within the product model for both
relational or non-relational databases within the entity join concept. This concept leads us to the fact
that relational model cannot be avoided as per the complexity of cursor manipulation over the whole
set of data stored in table or document storage.

Acknowledgements

The author expresses gratitude to the Free Software Foundation (FSF) for providing with all the
necessary software in order to prepare this work for evaluation.

We have also experienced a good work-around using the tools and cloud services described in this
work.

References

[1] Banerjee, Shreya. Bhaskar, Sourabh. Sarkar, Anirban. Narayan, C. Debnath. A Formal OLAP
Algebra for NoSQL based Data Warehouses. Annals of Emerging Technologies in Computing. 2021. 5.
154-161. 10.33166/AETiC.2021.05.019.

[2] Erraissi, Allae. Hadoop Storage Big Data layer: meta-modeling of key concepts and features.
International Journal of Advanced Trends in Computer Science and Engineering. 2019. 8. 646-653.
10.30534/ijatcse/2019/49832019.

[3] Chang, Ming-Li. Chua, Hui Na. SQL and NoSQL Database Comparison. Proceedings of the
2018 Future of Information and Communication Conference (FICC). 2019. 1. 10.1007/978-3-030-03402-
3_20.

[4] Lv, Teng. Yan, Ping. He, Weimin. Wang, Tao. On Approximate Querying Large-Scale JSON
Data. Journal of Physics: Conference Series. 2020. 1575. 012066. 10.1088/1742-6596/1575/1/012066.

[5] Ha, Muon. Shichkina, Yulia. Translating a Distributed Relational Database to a Document
Database. Data Science and Engineering. 2022. 1-20. 10.1007/s41019-022-00181-9.

[6] Matallah, Houcine. Belalem, Ghalem. Bouamrane, K. Comparative Study Between the MySQL
Relational Database and the MongoDB NoSQL Database. International Journal of Software Science and
Computational Intelligence. 2021. 13. 38-63. 10.4018/1JSSC1.2021070104.

[7] Syzdykov, Mirzakhmet. CSvdb: NoSQL Ccsv Database System.
https://github.com/mirzakhmets/CSVdb. (accessed May 7%, 2022).

NOSQL PEJANOUAJBIK JEPEKKOPBIHBIH IHIKI)KYMBIC)KYKTEMECI

Mpeip3axmet ChI3ABIKOB
6

https://github.com/mirzakhmets/CSVdb

Internal workload of NOSQL relational database
Mirzakhmet Syzdykov
On-Oapabu areinaarsl Kazak yiTTeIK yHUBEpcuTeTi, AaMatsl, Kazakctan
mspmail598@gmail.com
ORCID ID: https://orcid.org/0000-0002-8086-775X

Angarna. byn makamaga 6i3 NoSQL maiianaHymIbICBIHBIH €3apa opeKeTTeCY MPOTOKOJBIH
KOJIAWTHIH THIITIK PETAIHASIIBIK JlepeKKOPIBIH 1K)KYKTEMEe CXeMachlH YChIHAMBI3, 013 CYpaHbICTApABIH
KYPAEiNiriH eHAIpiCTIK TYTHIHYAaH ayjaK 00Jia aIMaTEIHBIMBI3AbI JkoHe explain plan cUsAKTHI 3aMaHayn
smicTep NEpeKKop cepBepiHiH (PYHKIMOHAJABIFBIH allblK JepeKTep KOWMACBHIH KOJNJAWTHIH COHFBI
naiiTamaHyIbFa)KeTKi3y/1e MaHbI3IbI POJ aTKAPAThIHBIH MamiMaeimiz. CSV (aiii minrimi CUSKTHL, 01 03
Ke3eTiHJe MOTIHAIK OOJIBIN TaOBUIAIBI — OCBLIAMIIA, AllIBIK PEero3uTopuil Maceneci CSV CUSKTHI KecTe
(opMaTTapblH MIEKCi3 KOJAAY asChIHAA OCBl XKYMBICTa TaIKbUIAHA/IbI, Ka31pri 3aMaHFbl YIKEH JepeKTep
TEeHIEHIMsIapbIHA KeIeTiH Ooiicak, 0i3 SQL-miH TaHBIMal JAEPEKKOp KYHeIepi SMITMPUKAIBIK TYPHIE
KOJIJAHATBIH IIEMIIMAlI YCBIHAMBI3-OyJT Kipic cypayapl icKe KOCY XOHE HOTIKEHI TYNKUIIKTI IIemiM
KaObuIJay YIIiH KaObUIJaHybl MYMKIH (pOpMaTKa aifHANIBIPY JKOCTAphl MIBIFapy; coHaal — ak, 6i3 C#
Oarmapnamanay TutiH koHe.NET framework kemerimen OarmapiaManaHaThIH ©HIM/L JKacailMbI3, olap
OarmapiaMansbiK jkacakTama TuaThopMacklHAH TOYEINCi3 AyphIC 93ipiiey YIIiH 3aMaHayu OaraapiaManay
opTackl OOMNBIN TaOBUIAJBI-COHBIMEH KaTap pEJIMSIIBIK MONIiIMETTEp Oa3achblHa CYpaHBICTAPIbIH
KYPACTLIIriH 6HJeY JKoHEe OHTAMIaHIBIPY YIIiH MaHbI3Ibl TEOPEMaTap IbIH JSJIEI.

Tyiiin ce3gep: NoSQL, nepexrepai oHACY,pEISAIISUIBIK IepeKTep 0a3ackl, allblK CaKTay.

BHYTPEHHS S PABOUYASI HATPY3KA PEJISIIIMOHHOM BA3BI JAHHBIX
NOSQL
Mpip3axmet ChI3AbIKOB
Kazaxckwuii HalMOHANBHBINA YHUBEpCUTET UMeHH anb-Dapadu, Anmarsl, Kazaxcran
mspmail598@gmail.com
ORCID ID: https://orcid.org/0000-0002-8086-775X

AHHoTanms. B 310l cTaThe MBI IIPECTAaBIAEM CXeMy BHYTpeHHEW pabouell Harpy3Ky TUITMYHOM
PeNSIMOHHOM 0a3bl TaHHBIX, HOAEPKUBAIOLIEH MPOTOKOJI B3aMMOJIeiicTBUS ¢ mosb3oBaTeneM NoSQL,
MBI 3asBJISIEM, YTO HeNb3s H30eXaTh NPOM3BOACTBEHHOIO IOTPEOJICHUS] CIOKHOCTH 3alpocoB, a
COBpEMEHHBIE METOJBI, Takhe Kak explain plan, WrparOT >KM3HEHHO BaKHYIO POJIb B JIOBEJCHUU
(YHKIMOHAIBHOCTH cepBepa 0a3 MaHHBIX 10 KOHEYHOI'O I0JIB30BATENS C IOAJEPKKOH OTKPHITOTO
XpaHWIHILA JaHHBIX, TAKOTO Kak ¢opmar ¢aitna CSV, KOTOpHIiA, B CBOIO OYepeb, SIBISETCS TEKCTOBBIM
— TakuM 00pa3oM, BOIPOC OTKPBITOTO XpaHWIHIIA OOCYXKJaeTcs B OTOH pabore B pamkax
HEOTPaHMYCHHOW TMOAJCpKKH QopMaToB Tabmui, Takux kak CSV, 4To KacaeTcs COBPEMEHHBIX
TEHIEHIMI B 001acTH OOJBIIMX JaHHBIX, MBI IIPeUIaraeM peLieHne, MPeanoNoKUTeIbHO IMIIMPUIECKU
UCTIOJIb3yeMOe TIOMYJISIPHBIME cHCTeMaMu 0a3 gaHHbIX SQL — 3To 1uiaH 3amycka BXOSIIEro 3anpoca U
npeoOpa3oBaHus pe3yibTaTa B POpMaT, KOTOPBIH MOXKET ObITh MPUHST IS OKOHYATEIIEHOTO BHIBOJIA; MBI
TaKXe pa3padaTbiBaeM KOHEUHBIH TPOrPaMMHUPyEMBIH POILYKT, UCHOMNb3YS S3bIK MporpaMmMupoBanus C#
u .NET framework, KkoTopble SBISIOTCS COBPEMEHHBIMU CpeJaMy MPOrPaMMHUPOBAHUS AJIsl TPAaBUIILHON
pa3paboTKH HE3aBHCUMOrO OT IUIATGOPMBI MPOTPaMMHOTO OOECIIEYeHUs] — TakKe TPUBOJUTCS
JIOKa3aTeJIbCTBO BaKHBIX TEOpeM 00pabOTKM M ONTUMH3ALUHU CIOKHOCTU 3alpOCOB K PEISIIUOHHBIM
0a3aM JaHHBIX.

KaroueBbie cioBa: NoSQL, o0OpaGoTka JaHHBIX, peJsIlMOHHAs 0a3a JaHHBIX, OTKPHITOEC
XpaHWIIHIIE.

Cseodenus 06 agmope:

Ane.: Syzdykov Mirzakhmet - al-Farabi Kazakh National University, Almaty, Kazakhstan

Kasz.: Cvi13061506 Muip3axmem- an-Dapabu amuvinoazel Kazax yimmulx ynusepcumemi, Aimamal,
Kazaxcman.

Pyc.: Cwizovikoé Muipzaxmem- Kazaxckuil HAyuoHAIbHbIL YHUSEpCUMEM UMEHU AJlb-
Dapabu, Armamel, Kazaxcman.

https://orcid.org/XXXX-XXXX-XXXX-XXXX
https://orcid.org/XXXX-XXXX-XXXX-XXXX

